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In the Classroom

Thermodynamic entropy, S, can be treated as a measure of 
spontaneous spreading of the available energy, E (e.g., tempo-
rally, among the accessible microstates, in a different one each 
instant, resulting in an averaged distribution) (1, 2). Clausius’s 
fundamental equation,

	 d revS
q
T

=
d

	 (1)

where d–qrev is an energy exchange in the form of heat under 
conditions of thermal equilibrium with the surroundings and 
T is temperature, entails the essence of this interpretation in 
combination with the Boltzmann–Planck equation,

	 SS k WE( ) = ln 	 (2)

in which W is the number of equiprobable microstates (energy 
distribution modes) accessible by the system via random motion 
consequent to energy-exchange events1 and k is the Boltzmann 
constant. 

 In light of a view of entropy change as solely involving 
energy distributions, configurational or positional entropy that 
evaluates numbers of seemingly temperature-independent 
locations in space (using eq 2) may appear to present a problem. 
Yet, this apparent inconsistency is not due to any case in which 
configurational entropy has been shown to yield unreliable 
numerical results. Historically, in a number of cases positional 
entropy has been the simplest way in which some phenomena 
could be directly evaluated (e.g., residual entropy; ref 3) .

The problem is that entropy change may be perceived to be 
due solely to an explicit increase in accessible positions in space, 
a way that W may be interpreted in eq 2. The implication that 
there are two distinct varieties of entropy (“configurational”, that 
is, spatial but temperature-independent and “thermal”, that is, 
space-independent) undermines instruction.

Quantum mechanics is not directly applicable to the 
systems with defined locations and momenta (particularly, in 
tightly packed condensed phases), owing to the uncertainty 
principle. Thus, positional entropy is a classical view of the 
canonical ensemble valid above a high-temperature (classical) 
limit. However, one of the key challenges to teaching physical 
chemistry is that the canonical ensemble is mentioned only 
long after entropy is introduced and widely used (4e, 5f, 6a). A 
rigorous explanation of configurational entropy using statistical 
mechanics is, thus, traditionally done in the graduate curriculum, 
using advanced mathematics.

To address this problem at a lower level, classical and 
quantum mechanics should be connected without involving 
the complexities of rigorous statistical mechanics. Most im-
portantly, energy quantization may be taken into account via 
the use of the “spinless” Boltzmann distribution (ignoring the 
difference between bosons and fermions). Several textbooks 

build the entire physical chemistry course upon this concept 
(7, 8). In my previous publication, I provided a reconciliation of 
thermal and configurational calculations of the residual entropy 
in crystals (3).

In the present article, this treatment is expanded to ther-
mally equilibrated condensed phases, primarily liquids. In this 
case, involving distinguishable and exchangeable particles, con-
figurational entropy is intuitive because different microstates 
can be obtained by switching the molecules’ positions because of 
molecular motion (as opposed to “thermal” energy exchange). I 
shall proceed directly with two cases to illustrate the problem.

The Problem:  
Two Cases That Frequently Cause Misconceptions

Case 1: Entropy of Neat Liquids
In a blind application of configurational entropy to N dis-

tinguishable particles (e.g., in condensed phases) assuming that 
each particle is unique and distinguishable by its interactions 
with other unique surrounding particles, that is, configurations, 
the number of equiprobable microstates, W, may be calculated 
as

	 W N= !	 (3)

At first glance, this formula, applicable also to a deck of N 
cards each of them having a different face value, allows for the es-
timate of molar configurational entropy of condensed phases for 
point-size particles that are all distinguishable (NA is Avogadro’s 
number and R is the gas constant):
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However, eq 4 is not applicable to real systems: Standard molar 
entropies of common inorganic solids or liquids are much small-
er (4f, 9), whereas the S o values for hydrocarbons greater than 
C12 exceed this “limit” (10). Does the failure of this approach 
mean that configurational entropy is not applicable?

Case 2: Entropy of Mixing
Configurational entropy of mixing for ideal miscible liquids 

is due to the independent expansion of two fluids into each 
other’s volume (4a, 5a),

	 mΔ iixing S R X Xi i
i

m
= − ( )

=
∑ ln

1
	 (5)

(Xi is the mole fraction of a component); the random, probabi-
listic nature of eq 5 is underscored by Gibbs’ equation involving 
probabilities instead of Xi (4c).
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Equation 5 can be considered for equimolar amounts of 
two liquids without narrowing the scope of the study, as it has 
been shown (3, 5a). In this simplified system (two different 
chemicals mixed in a 1:1 ratio and having N = N1 + N2 = NA), 
the molecules of each kind are considered indistinguishable 
within the subsets but distinguishable between the subsets. 
“Configurational” eq 5 yields ΔmixingS = ‒2R × ½ln ½ = Rln 2. 
However, since neither energy nor temperature are involved in 
this derivation, it is not obvious that “thermal” entropy is appli-
cable to the process of mixing; particularly, for ideal solutions, 
when the enthalpy of mixing is zero, ΔmixingH ≈ 0.

The “thermal” way of counting microstates, essential for 
explaining this apparent lack of application of thermal entropy, is 
considered in the next section. Then, after linking this approach 
to configurational considerations via the molecular partition 
function, these two cases will be revisited.

Thermal Entropy:  
Reconciliation of Thermodynamics and Statistics

The population of energy levels at thermal equilibrium is 
described by the Boltzmann distribution (3, 4b, 6b, 11, 12),
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where Ni, εi, and gi are the population, energy, and degeneracy 
of a certain i-th energy level, respectively, n is an integer (so, 
i + n refers to a different energy level separated by the energy 
gap, Δε), subscript j denotes a general energy level, N = ΣNj is 
the total number of particles in the system, and Δε is the energy 
gap separating the energy levels of interest. The denominator in 
eqs 6a and 6b is called the molecular partition function, which 
will be considered in the next section.

The most probable, that is, spontaneously achieved, Boltz-
mann distribution is derived assuming the maximum number of 
microstates for a closed system (N = constant) under the con-
straint of constant energy (i.e., the micro-canonical ensemble); 
normalizing the energies by temperature links it to the statistical 
canonical ensemble (5b). The physical significance of having 
exponents in these equations is the randomness of the “choice” 
made by particles in achieving this distribution (4b, 12). Because 
of this randomness, eq 6 serves as a connection of “thermal” eq 1 
and statistical eq 2 for entropy calculations. It limits the number 
of possible microstates to those accessible at a given temperature 
for a given energy gap.

Equiprobability of Configurations:  
The Rigorous Criterion

The exponential factors in eq 6 account for the unequal 
probability of the lower-energy and higher-energy states, thus 
serving as “statistical weights” (11). The other statistical weight 
is the degeneracy factor for a particular state, gi (12). Without 
the use of temperature-dependent exponential factors of eq 6, 
some values of “entropy” may be calculated using eq 2; how-
ever, they would not necessarily be thermodynamically relevant 
because some of the microstates would not be attainable (13) 
or would not be taken into account with the correct statistical 
weights (11).

It is worth mentioning that the unequal accessibility shows 
up not only as a low population of the upper energy levels but 
also in terms of real spatial configurations. An example is the 
head space for a neat liquid in a closed container; the positions 
within and outside of the liquid’s boundaries are not equiprob-
able for the molecules at temperatures below the boiling point. 
Thus, “configurational” microstates involving the even distribu-
tion of molecules throughout the volume of liquid and head 
space are not attainable.

Yet, the microstates become equally accessible and, thus, 
equiprobable if the measure of an increment of energy, kT, 
overcomes the energy gaps between any two of given energy 
levels (3); this criterion may be re-stated as “dimensionless” 
energy gaps (Δε∙kT) are infinitesimal for all accessible m energy 
levels:

	
Tk Tk

m=
−

≈
Δε ε ε1 0	 (7)

Here, (εm − ε1) is the energy gap effectively overcome by the kT 
heat bath. The physical interpretation of this equation is that 
overcoming of Δε by kT results in the equipopulation of energy 
levels.2 Henceforth, m will be used as both an index number for 
the maximum energy level for which eq 7 is applied and a total 
count of such qualified energy levels.

An illustration for the simplest case of m = 2 (non-degen-
erate) and ε1 = 0 is provided in Figure 1. N2∙N1 is near 1 when 
1 >> Δε∙kT ≈ 0 (mode C). By contrast, as shown earlier for 
this system (3, 6b), the population ratio of the highest and low-
est occupied energy levels, N2∙N1, is close to zero when either 
the dimensionless energy gaps are large or, equivalently, when 
temperature is below the characteristic temperature, Θ = Δε∙k. 
These two cases can be unified by using the condition opposite 
to that of eq 7, where Δε∙kT >> 1 (mode A in Figure 1). In this 
case, as well as in transitional mode B (occurring within a lim-
ited temperature range), configurational entropy is inapplicable 
because microstates are not equally accessible.

This simple two-level consideration can be readily ex-
panded to the case of any number of populated energy levels, 
m. The application of eq 7 to eqs 6a–c (i.e., assuming T >> Θ) 
moves the system to a state similar to mode C in Figure 1. This 
entails an effectively “infinitely high” temperature and nearly-
equal population of m accessible levels, which yields N∙m for 
the population of levels (3).

While expanding the two-level case to m energy levels, one 
has to consider degeneracy that may exist as a consequence of 
states with different sets of quantum numbers having the same 
energy. This adjustment, essential for the application to various 
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types of molecular motion (described by the solutions of cor-
responding quantum mechanical problems) will be represented 
henceforth by replacing m with a similar parameter, m′ (count-
ing all of the different states rather than just energy levels).

Equation 7 is too rigorous for practical applications, that 
is, the limit does not have to be closely approached; this issue is 
dealt with in the next full section concerning molecular parti-
tion functions. However, the approximation used in eq  7 is 
helpful for conceptual understanding of how equipartitioning 
enables the application of configurational entropy; this issue is 
considered now.

The Algebra of Permutations:  
How Molecules Let the Dice Fly

For N particles distributed among m′ states at a given 
temperature, the number of available microstates, W(T ), in the 
system can be calculated:

	 W T
N

N N N
( ) =

1 2

!
! !… ′′m !

	 (8)

For any Ni = N∙m′ (i.e., equipopulation at “infinitely high” 
T, T∞), eqs 2 and 8 may be combined. Upon the application 
of Stirling’s approximation, the entropy change reflecting the 
system’s transfer from T = 0 to T∞ can be found,

	

ΔS k= ln W T W T k N
N
m′

m′∞( ) ( ) ==0 ln
!

! 1

= kN m′ln

	(9)

where W(T=0)  =  1 is the single microstate when all of the 
particles are on the ground energy level.

On the other hand, by an algebraic rearrangement of  
kN ln m′, the following equation can be obtained:

	 ΔS ( ) = = ( )∞T kN m′ k m′ Nln ln 	 (10)

This equation shows the inherent coupling of the “thermal” ap-
proach to configurational permutations (combinations of finite 
sets of objects) because m′N in eq 10 can be visualized as the 
number of possible combinations while tossing a hypothetical 
die—with m′ equal sides—N times. Figuratively speaking, each 
molecule “rolls a die” to “decide” which quantum state it will go 
to upon an energy exchange event. The use of a die is consistent 
with eqs 6 and 7. A die whose imperfection is infinitesimally 
small still generates equiprobable combinations, within the 
margin of statistical errors. When this condition is met, m′ in eq 
10 represents the number of both available energy-distributing 
states and spatial configurations (3). By contrast, when eq 7 is 
not valid, the die is significantly skewed; some sides are “heavier” 
than the others. The microstates with significantly smaller Boltz-
mann exponential “statistical weights” that disobey eq 7 would 
be as likely as the landing of a die on its corner and staying in 
this precarious position.

The Molecular Partition Function  
as an Effective Value of m’

Equation 7 sets a rather rigorous requirement that seems to 
be unattainable. However, Scott showed that a large percentage 
of the calculated vibrational and, particularly, rotational heat 
capacity is accounted for by the accessibility of just a few energy 
levels higher than the ground state (11), that is, the effective m 
to satisfy eq  7 tentatively is lower than the actual number of 
populated energy levels.

This problem may be addressed by revisiting the molecular 
partition function, q(T ), the denominator in the Boltzmann 
distribution formula (eqs 6a and 6b),

	 − ( )∑ ε
j

kTg je( ) =q T 	 (11)

which will be considered below separately for two important 
subsets.

Limited Number of Energy Levels
Each exponential term in eq 11 is varied from 0 to 1. A 

simple illustration for a non-degenerate two-state system (i.e., 
1 < q < 2) is shown in Figure 1. One can see that q(T), similar 
to the population ratio N2∙N1, changes nearly stepwise with 
temperature, from approximately 1 in mode A (the two expo-
nential terms in the denominators of eqs 6a and 6b being near 
1 and 0, respectively) to near 2 in mode C (both terms yielding 
exactly 1 with q = 2 at T∞).

The logical expansion to a more general case of multiple 
(yet limited) accessible energy levels (eq 6) leads to a well-known 
conclusion that the value of q is tentatively equal to the number 
of accessible states, m′, for an average molecule (5c). Figure 1 il-
lustrates that this condition becomes mathematically rigorous at 
T∞, that is, assuming eq 7 (mode C). In this case, the molecular 
partition function has a clear physical significance as a probabi-

Figure 1. The molecular partition function (right vertical axis) and 
relative energy-level population (left axis) of a two-level system (with 
a zero-energy ground state) as a function of temperature.
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listic value for equally populated states (4c),

	
1

limm q T
T

′ = ( ) =
→∞ pp pi

=
1

	 (12)

where pi is the probability of a molecule to occur in state i and p 
is the probability of a molecule being in a particular equipopu-
lated state in general.

Unlimited Stack of Energy Levels
For an unlimited number of available energy levels, Fig-

ure 1, applicable to limited values of m, needs to be adjusted. 
Textbooks show that upon changing summation to integration 
in eq 11, q(T ) becomes a continuous function proportional to 
T x∙2 where x is the number of independent kinetic and potential 
energy terms for a given mode of motion (4e, 5g, 6c). Similar to 
the case of a limited number of states, this treatment is valid only 
above the effective characteristic temperature, thus imposing the 
assumptions of eq 7, for example, infinitesimal “dimensionless” 
energy gaps, Δε∙kT. Such an assumption defines this state of the 
system as a classical limit because the quantization is effectively 
negated.

Connections to particular kinds of molecular motion are 
provided by Scott who showed that the classical limit is reached 
when only a few lowest energy levels or states are intensely popu-
lated (11). This outcome is because the above considerations, 
made for a limited number of states, still apply to an unlimited 
stack, except that the slope of the asymptotic line for high-
temperature limit in Figure 1 becomes positive (Figure 2). Us-
ing eq 11, several consecutive exponential terms (reflecting the 
highly populated low-energy levels) are still near 1, the rest are 
near zero; the number of those near 1 increases with temperature 
and is tentatively equal to q (5c, 6c). Thus, q provides the effective 
value of m′ for which eq 7 is valid at a given temperature. Note 
that q, as an effective value, does not have to be an integer.

It is important to recall that the molecular partition func-
tion is the sum of “statistical weights” for each particular state 
(e‒εi∙kT ) for all of the energy levels ( gi e‒εi∙kT ).3 Thus, its calcula-
tion is an essential step to defining an effective/average particle 
having an equal probability of occupying any of the accessible 
energy levels [ p = 1∙q(T ), as in eq 12] (4c, 5f ). Considering 
the system as N identical average particles (to which eqs 8–10 
are also applicable) provides a “bridge” between the micro-
canonical and canonical ensembles by calculating the entire 
system’s partition function, Q(T ), which reflects the statistical 
number of equiprobable microstates in the system at a given 
temperature:

	 Q T W T q T N( ) = ( ) = ( )⎡⎣ ⎤⎦ 	 (13)

In eq 13, q(T ) (calculated as a product of partition func-
tions for the available modes of motion) can be viewed as the 
effective number of attainable configurations at a given tem-
perature (as m′ in eq 10). Whenever this assumption is used, 
configurational entropy is applicable [e.g., “configurational 
integrals” (6e), residual entropy (3), or activation entropy (14)]. 
However, as shown in the next section, uncoupling either q or 
W from their thermal nature leads to errors.

Returning to Case 1: Pure Condensed Phases

Configurational entropy, in its application to distinguish-
able particles (e.g., in condensed phases) approximates the expo-
nential curve shown in Figure 1 as a stepwise switch between just 
two modes, A and C. In mode A, there is only one microstate, 
W = 1 yielding S = 0 (eq 2). In mode C, assuming that each 
particle is unique and distinguishable (i.e., N1 = N2 = Nm′ = 1 
and m′ = N), the number of equiprobable microstates may be 
calculated using eq 3 (W = N!), which turns out to be incorrect 
for real neat liquids.

Thus, configurational entropy cannot be decoupled from 
q(T ), the number of attainable configurations per molecule at 
a given temperature. The assumption of eq 3 (distinguishability 
of all particles) is valid only if m′ ≈ q = NA whereas the values 
of vibrational and rotational q(T ) at room temperature are 
significantly smaller (4e, 6c, 12).

This consideration does not mean that the application of 
configurational entropy necessarily leads to errors; it does so 
only if the value of characteristic temperature is ignored. An 
example can be offered on intermolecular vibrations. HCl di-
poles are known to be present in virtually 100% “head-to-tail” 
configuration near its freezing point, so it freezes as a “perfect” 
crystal. This means that, at this temperature, q(T ) = 1 for inter-
molecular vibrations, that is, the system is below the character-
istic temperature for this type of motion (mode A, Figure 1). If 
either temperature increases or the energy gap (Δε) between the 
“head-to-tail” and “head-to-head” configurations decreases (e.g., 
as is true of CO, in contrast to HCl, near its freezing point), the 
choice of configuration is nearly random, so q(T ) ≈ 2 (3).

The second problem with the application of eq 3 to neat 
liquids is that molecules, instead of being of “point-size”, possess 
multiple degrees of freedom, each having an unlimited stack of 
energy levels (thus, illustrated by Figure 2 rather than by Fig-
ure 1). For instance, molar entropies exceed the kln N! value for 

q

0
0 Θ

T

Tx/2

Figure 2. The molecular partition function as a function of temperature 
(Tx/2) for a system with an unlimited stack of energy levels.

http://www.jce.divched.org/Journal/
http://www.jce.divched.org/Journal/Issues/2008/
http://www.jce.divched.org/
http://www.DivChed.org/


© Division of Chemical Education  •  www.JCE.DivCHED.org  •  Vol. 86  No. 9  September 2009  •  Journal of Chemical Education 1067

In the Classroom

large flexible molecules with low-energy internal rotations (e.g., 
hydrocarbons greater than C12). This result is due to low char-
acteristic temperatures of internal rotations around the C−C 
bonds (5e) leading to large values of q at room temperature (as 
illustrated in Figure 2). From the standpoint of configurational 
entropy, some of the parts of such molecules become distin-
guishable, thus increasing the number of microstates above the 
perceived N! limit.

Why Are Molecules Not Like Cards?
This consideration sets the rigorous limit to the use of a 

52-card deck to illustrate entropy change (2a). The “information 
entropy” (S = k ln 52!) calculated for possible sequences in this 
card deck does not represent a thermodynamic entity. First, this 
model misrepresents the entropy of a real molecular system by 
omitting any equivalent to molecular motion at a given tempera-
ture. Second, being temperature-independent, this model does 
not obey the third law and definition of the micro-canonical 
ensemble. The root of the problem is that the “particles” within 
a card deck (having Δε = 0) are unlike the molecular systems 
(where Δε ≈ 0 is a useful approximation only above the char-
acteristic temperature, that is, Δε << kT ). Switching particles 
present in the same state (e.g., having the same energy) within a 
micro-canonical ensemble does not generate new microstates, so 
W = 0 and S = 0. This system is neither thermal nor dynamic.

By contrast, in real condensed phases interactions of dif-
ferent atoms in different configurations lead to different energy 
gaps, thus yielding different values of Δεi to mark their thermody-
namically relevant distinguishability. It is the difference in energy 
that serves as a distinguishability marker, no matter how small 
the dimensionless energy gap, even at T∞ (eq 7).

Thus, in thermodynamic applications, not every ln  W 
may be allowed to be multiplied by k in eq 2 to yield a valid 
thermodynamic value; W must be temperature-dependent in 
accordance with eqs 6 and 13. As shown in the next section, this 
limitation is also true for the entropy of mixing.

Returning to Case 2:  
Mixing from the Standpoint of Thermal Entropy

Consider two liquids mixed to reach equilibrium. The two-
state model (Figure 1) can be applied assuming a single average 
energy for the “ground state” of separated species only and a 
single average energy for the “excited” solution state (Δε being 
the energy difference between the averaged homomolecular 
and solute–solvent interactions). When m = 2 = qmixing, mean-
ing that the liquids are fully miscible, the locations within the 
former two liquids (i.e., before mixing, with one liquid on top of 
the other) become totally equiprobable for each particle regard-
less of its origin, p = ½. Figuratively speaking, the multifaceted 
die to be rolled (eq 10) becomes a two-sided coin that each 
molecule “tosses” to “decide” whether it will stay in the original 
region or move to the other one.

For m equimolar components, the entropy of mixing can 
be expressed as 

	 1
m

1
m mmΔ iixing S R m= − ln R= ln 	 (14)

This equation justifies the applicability of eqs 9 and 10 
[W = (m) N] to the entropy of mixing. As has been noted be-
fore, eq 9 (of “thermal” origin”) and eq 10 (of “configurational” 
origin) are the same thus underscoring the inherent coupling of 
these two approaches when eq 7 is valid. Hence, the spreading of 
matter in spontaneous thermal motion is tantamount to energy 
spreading (because energy is carried by particles).

The fundamental problem, so far as thermodynamic 
entropy is concerned, is that viewing W  =  (m′)N as a purely 
statistical statement (where m′ includes degenerate energy lev-
els) means that all of these substates can be degenerate with no 
energy difference (Δε = 0, as in macro objects such as a perfect 
die or coin). As has been shown here, this condition may be 
valid in mathematics, but it does not rationalize an observable 
physical change in macro thermodynamics as does the micro-
thermodynamic view of mobile molecules constantly moving 
among different energy arrangements and randomly exploring 
available space as well.4

Generally, one may safely assume that different chemicals 
to be mixed are energetically non-equivalent with the presumed 
exception of isotopes. However, Levine (6d) pointed out that 
the appearance of entropy of mixing for different isotopes is 
also due to the small difference in the energy of intermolecular 
interactions. Isotopes are usually miscible at the melting point 
but become immiscible at very low T; with a notable exception, 
pointed out by Noggle, of 3He and 4He that are immiscible 
even in the liquid phase because of the difference in nuclear 
spins (5a).

Third Law and the Enthalpy of Mixing
This example illustrates the limitation of using configura-

tional entropy to describe mixing because the configurational 
approach fails to obey the third law. To avoid this pitfall, the 
adjustment to a temperature-dependent number of effective 
configurations (eq 13) has to be made (thus, Δε = 0). The low-
temperature limit of ΔmixingS is zero because chemicals become 
immiscible, even those that “are supposed to mix”.5 Account-
ing for the enthalpy of mixing can be addressed by using the 
“thermal” treatment, which couples the entropy and enthalpy 
of mixing for partially miscible liquids.

When eq 7 (i.e., T >> Θ) is not valid, that is, the chemicals 
are not miscible at a certain temperature, this system is either 
in mode A in Figure 1 (with the “mixing” molecular partition 
function near 1) if the mutual solubility is near zero (as for a 
long-chain aliphatic hydrocarbon in water) or in mode B if 
the solubility is noticeable (as for a mid-size alcohol in water, 
1 < qmixing < 2). Thus, unlike mode C, the locations within two 
phases are not equiprobable with the Boltzmann exponents 
(eq 6) being the statistical weights. The solubility is near zero 
below the threshold value of temperature, Θ = Δε∙k. Increase 
of temperature, normally, increases mutual solubility according 
to eq 6.

If the characteristic temperature (or Δε) is known, the 
population of the higher energy level (N2∙N, the mutual 
solubility of components) may be calculated, as a function of 
temperature, using the Boltzmann distribution (eq 6b). Once 
the value of N2 is known, the entropy change for partial mixing 
can be calculated using eq 8 combined with the mass balance 
equation (N = N1 + N2).
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Conclusion

Configurational entropy calculations for distinguishable 
particles are significant and valid as long as their fundamental 
connection to random energy dispersion is maintained. This con-
nection may be ensured by considering the molecular partition 
function, that is, the number of effectively equipopulated energy 
levels or, equivalently, the number of effective configurations for 
an average molecule attainable at a given temperature.
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Notes

	 1.	 This is merely an illustration; according to the ergodic hypoth-
esis, there is no preference for any particular temporal path.
	 2.	 Equation 7 does not necessarily state that the interactions 
between the particles are weak, although it could be the case when 
applied to the ideal gas. By contrast, for liquids, eq 7 (e.g., mode C in 
Figure s1) implies that there is no “preference” (i.e., no significant dif-
ference in energy) among m types of intermolecular interactions for m 
miscible liquids thus making an “ideal solution” (6a).
	 3.	 While focusing on energy gaps described by the exponential 
Boltzmann terms, one should stress that degeneracy integers, g j, may 
also make a significant impact on the value of q(T ) if the low-lying 
energy levels are substantially degenerate, thus partially offsetting a 
relatively large energy gap (e.g., rotation).
	 4.	 This treatment helps explain the Gibbs’ paradox, which is 
based on the assumption that, from a configurational viewpoint, mixing 
two identical volumes of the same liquid would generate ΔS = kN ln 2 
(eq 10). However, there is no paradox from the “thermal” view because, 
since Δε = 0 between the two subsets, m pertaining to mixing remains 
equal to 1; thus, W2 = W1 and ΔS = 0. An insightful discussion of the 
Gibbs paradox has been provided by Spencer and Lowe (15).
	 5.	 The corresponding heat of mixing may be recovered if, instead 
of the direct irreversible mixing, a reversible path is taken, along which 
eq 1 applies. Such a path for “unmixing” at low T is often unavailable 
because the mixture is usually a solid at T = Θ, and so the molecules 
cannot change their configurations upon cooling (16). However, 
Levine suggested an isothermal reversible path for mixing liquids that 
involves vaporizing each liquid at its equilibrium vapor pressure with 
the concomitant gas expansion; then, the gases (which could be mixed 
reversibly using selectively permeable membranes) are isothermally con-

densed into the solution (6f ). As pointed out by Levine, mixing several 
liquids (e.g., water and amines) yields negative ΔmixingS in a reversible 
process, owing to weaker hydrogen bonding in pure chemicals than in 
the mixture (6f ). This observation emphasizes the energetic aspect of 
mixing when applied to liquids.
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