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Standard entropy values of solids are small, those of gas-
eous substances are large, and the values for liquids lie in be-
tween. What creates a problem is the estimation of comparing
pairs of solids, liquids, or gases. One example could be the
assessment of whether the molar entropy of helium is smaller,
equal, or larger than that of krypton. This article makes a
unique contribution to the solution of this problem.

The term “entropy” was first used in the 19th century
by Clausius in classical thermodynamic theory and also later
in statistical mechanics by Boltzmann. But neither classical
thermodynamic theory nor statistical mechanics could solve
the problem of a black body. Planck combined entropy con-
siderations of both theories, which resulted in the energy
quantization and the correct radiation law. This led to the
discipline of quantum physics and with the help of the
Schrödinger equation it was possible to calculate the ener-
getic eigenvalues of substances. Thereby a deeper understand-
ing of the thermodynamic term “entropy” was achievable.
Kittel and Krömer (1) referred to this when they pointed out:
Ohne Quanten-Begriffe gibt es keine diskreten und damit
abzählbaren Zustände und ohne abzählbare Zustände bleibt die
Entropie unverständlich. [Transl.: Without quantum terms there
are no discrete and thus countable states and without countable
states entropy remains incomprehensible.]

Unlike most other thermodynamic quantities, which
have an arbitrarily defined zero level, entropy values are listed
in thermodynamic tables (2) for specific substances as abso-
lute values S � (not as ∆S �). Therefore, molar entropy values
are physical properties of the listed substances and a main
task of chemistry is to understand this property from the in-

ternal structure of the substances, that is, the particle masses,
bonding forces, electronegativity, bond distances, particle
volume and so on. Applying three simple rules concerning
energy quantization, this article proposes that it is possible
to realize that entropy values reflect the differences of par-
ticle masses or of chemical bonds.

This article will introduce a model that is easy to apply
in order to understand the relation between entropy on the
one hand and energy, heat, and temperature on the other.
With this new model it is possible to carry out simple calcu-
lations showing the systematic trends that are observable from
entropy phenomena. Thus it contributes to the understand-
ing of entropy as a quantum physical phenomenon. Former
methods of entropy interpretation were rather unconvincing
as they tried to understand entropy in terms of order and
disorder (3, 4). In recent years entropy has been described in
connection with particle motion and dispersal of energy (5–
8). But entropy as a physical property, has not yet been dis-
cussed. The model introduced in this article has already been
successfully applied for some years by the author in chemis-
try and physics lessons in a secondary school.

The Shelf Model

The Model
In 1901, Max Planck (9) discovered that energy does

not occur in indefinitely large or small portions but only dis-
tinct portions. One of these portions is referred to as an en-
ergy quantum. Energy is understood as stored work or stored
heat. As the basis for a model of energy storing it is therefore
reasonable to choose a tool, which we use for the storage of
everyday items: shelves. It is best to use low-cost shelves (Fig-
ure 1) that we often find in budget furniture stores because
of the numerous analogies between storing items in shelves
and storing energy by natural systems (Figure 2).
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Figure 2. Low-cost shelf model showing the energy scale with equi-
distant spacing of the shelves and nine particles with nine energy
units (eu).

Figure 1. Low-cost shelves, showing that for each shelf only distinct
heights are possible.
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• The vertical walls constitute the energy scale and cor-
respond to molecular energy levels.

• The shelves cannot be fixed at any height, only dis-
tinct positions are allowed depending on the substance
or system. This corresponds to the quantum physical
eigenvalues.

• A smallest quantum leap exists.

• The lowest shelf may be fixed at different heights.1

• Different widths represent different volumes for the
particles (uncertainty of position).

• A few shelves behind each other on the same height
represent degenerate energy levels.

Some illustrative examples of how the model is to be used
will follow. Figure 3 shows three shelves and, as in Figure 2,
there are nine particles with nine energy units (eu’s).

Although different distributions are possible, only the
particle distribution like that in Figure 3C is of importance.
The number of occupied energy levels is greater than in the
other cases and only the four lowest levels are concerned. The
occupation numbers decrease with increasing height of the
energy level. The values shown in Figure 3 had been calcu-
lated by
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where σ is the entropy, S is the conventional entropy, kB is
Boltzmann’s constant, N is the total number of particles, and
ni is the occupation numbers.

The examples of Figure 3 show three different accessible
states of a nine-particle system with the total energy of 9 eu
and each of these states consist of a number of microstates.
Equation 1 calculates the number of possible permutations
of the particles (Figure 4) keeping the occupation numbers
of these nine particles on the different energy levels. This
number of permutations is the number of accessible mi-
crostates. In the example of Figure 3C, the numbers are
N = 9, n1 = 4, n2 = 2, n3 = 2, and n4 = 1, so W = 9!�(4!2!2!1!)
= 3780 (Figure 3B = 1680, Figure 3A = 504). Although in
real systems different particle distributions are accessible, only
the distribution with the largest number of microstates, Wmax,
is realized. In the example of Figure 3, it is the distribution
shown in Figure 3C.

According to the Boltzmann principle the conventional
entropy fits the equation S = kB lnW. Because changes of en-
tropy could only derive from the term lnW and evidently not
from the constant kB, it is reasonable to define only lnW as
entropy (1).

The Three Rules
To understand measured values of entropy or entropy

changes or to predict or to estimate those values, it is helpful
to apply the following three simple rules.

The Basic Rule

Nature always distributes the total energy to be stored
in the particles so that the number of occupied energy
levels is as large as possible and at the same time their
energy heights are as low as possible. A distribution that
does not follow this rule is not impossible, but very im-
probable.

Figure 5A shows a typical situation for particles in a shelf
model following the basic rule. If one pushes all particles to
the right edge of each shelf (Figure 5B), it is possible to rec-
ognize a functional connection. By turning the shelf clock-
wise by 90�, the presentation of a mathematical function
becomes visible: the occupation numbers, n, as a function of
the level energy, E (Figure 5C).

Using the shelf model it is possible to carry out simple
model calculations, especially if one concentrates on cases with
constant shelf distances. Equidistant energy levels occur in all
substances with chemical bonds, meaning monatomic gases
are the only exception. If the entropy values for different to-
tal energies are computed with the shelf model a positive as-
sociation between entropy and the number of occupied levels
is the result. Plotting the entropy S�R or the number of

Figure 4. Permutations of the particles lead to different microstates
of a system.

Figure 5. Modeling the Boltzmann distribution.
Figure 3. Different particle distributions with the same number of
particles and the same total energy lead to different values of en-
tropy.
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microstates as a function of the number of occupied levels
nocc, one obtains curves with positive slopes. It is remarkable
that the gradients of these curves do not depend on the shelf
distances in the shelf. In Figure 6, it can be seen that differ-
ent level spacing leads approximately to the same curve, which
had been calculated for two different, but equidistant, level
spacings. The bottom part of Figure 6 shows the analog cor-
relations for two real substances with not equidistant levels.
The calculation was carried out with eqs 1 and 6 using real
values of helium and argon.2 Different substances, however,
differ mainly in the distances between the levels (details will
be elaborated later). Independent from the kind of material,
one can, therefore, come to the following conclusion:

Entropy is a measure of the number of occupied en-
ergy levels.

Entropy is exactly defined as the natural logarithm of
the number of energetic microstates belonging to a certain
total energy of a system or substance (1). Of course, the above
statement can only serve as an approximation.3 However, the
experience with the shelf model shows that in most cases it
is sufficient to calculate with equidistant shelves to estimate
entropic effects correctly.

If the temperature of a substance or a system increases
the particles will keep a Boltzmann distribution but will be
shifted from lower to higher energy levels—the number of
occupied levels and the entropy increases (Figure 7).

The definition of temperature T or fundamental tem-
perature, τ = kBT, in classical thermodynamics is given by
the following equations:
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where H is the enthalpy, U is the internal energy, p is pres-
sure, V is the volume, Ei is the energy of level i, T is the tem-
perature, and τ is the fundamental temperature.

Because the Boltzmann distribution is defined by eq 3,
temperature appears as a parameter of this function. The defi-
nition of the fundamental temperature (1) based on energy
quantization fits eq 4.

Because S in the classical definition is incomprehensible
without quantum physical terms it becomes necessary to un-
derstand temperature as a quantum physical phenomenon.
The number of possible values for the numerator Ei − E1, as
well as for the denominator lnn1 − lnni, are countable (i =
only natural numbers). As a consequence, the values for the
temperature of a certain system correspond to the rational
and not to the real numbers. For example if index i indicates
the highest occupied level, then increasing i leads to a higher
temperature (eq 4) and to more occupied levels, that is, to a
larger entropy.

In analogy to the radioactivity phenomenon of half-life,
temperature τ may be written, as in eq 5, as a measure of
“half-energy” Eh = Ek − Ej with nj�nk = 2:

E
= h

ln2
τ (5)

Changes in entropy normally do not refer to changes in
particle distribution as shown in Figure 3. When exposed to
changed conditions of temperature (Figure 6), pressure, num-
ber of particles, and so forth, in most cases, natural systems
or substances change from one Boltzmann distribution to an-
other. A process linked with entropy production means that

Figure 7. (Left) Low temperature, 7 levels occupied, low entropy.
(Right) High temperature, 10 levels occupied, high entropy.

Figure 6. (Top) Correlation between entropy and number of mi-
crostates and the number of occupied energy levels nocc, calculated
for 5000 particles with the help of the shelf model for different
level distances (∆E = 1.5 or 0.5 eu), to simulate different substances.
(Bottom) Correlation between entropy and number of microstates
and the number of occupied energy levels nocc, calculated with eqs
1 and 6 for 1 mole of helium and argon.
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the number of energetic microstates increases because of
changes in the Boltzmann distribution. Simply speaking this
means the number of occupied energy levels increases for
three reasons: more particles, higher temperature, or smaller
level distances.

The Force Rule
If the particles are bound by strong forces to stay in a
small space (small uncertainty of position) the distances
between the energy levels increase. The quantum leaps
will be enlarged.

To simulate a liquid, we use a shelf with the level dis-
tance of 1.5 eu. The Boltzmann distribution calculated with
the shelf model shows that 5000 particles occupy 30 energy
levels while having an average particle energy of
5.00 eu�particle and a temperature of 5.75 temperature units
(model units). This situation is shown in Figure 8.

We now simulate a solid material, in which the forces
between the particles are supposed to be larger. The level spac-
ing therefore increases, for example, to 3.0 eu (Figure 9).
Comparing Figures 8 and 9 shows that each even level has
been omitted in the second case and the particles on the
omitted levels had been additionally placed on the other lev-
els. The occupation numbers are larger in this second case
and the number of occupied levels becomes smaller (Figure
9). At the same temperature the average particle energy
amounts now to 4.38 eu�particle and only 16 levels are oc-
cupied.

Since the number of occupied levels decreases, the en-
tropy of the substance also becomes smaller. At the same tem-

perature and with the same amount of substance the num-
ber of occupied levels as well as the entropy is smaller in a
system with larger level spacing. This is exactly the situation
one would find in a solid material: The forces between the
particles are larger than within liquids or gases, which means
that the level spacing is larger and the entropy smaller. Thus
the shelf model helps to illustrate that normally the entropy
of solid materials is smaller than that of liquids or gases where
the particles are not forced to stay in such a small space as in
the solid state.

The Mass Rule
If the considered particles have large masses, one will
find adjoining energy levels at slight distances. Small
quantum leaps will occur.

From infrared and Raman spectroscopy we know about
the isotopic shift to lower absorption frequencies when one
of the vibrating atoms is replaced by a heavier isotope. The
lower vibration frequency of the chemical bond with the
heavier isotope indicates smaller energy level distances. Like-
wise this rule helps to understand the different entropy val-
ues of substances within the same state of aggregation, for
example, the different gases or different salts (2).

The rule works even for the noble gases: The atomic mass
increases from period to period. According to the mass rule
the energy level distances decrease. Therefore a larger num-
ber of energy levels is occupied, which results in a larger en-
tropy value of the heavier noble gases (Figure 10).

The Quantum Physical Principles
Energy quantization forms the basis of the three rules

and the energy levels can be calculated with the help of the
Schrödinger equation. There are three different ways to store
energy according to the classical view of particle motions:
translation, rotation, and vibration
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Figure 10. Molar entropy and the influence of particle masses (2).

Figure 9. A Boltzmann distribution calculated with the shelf model,
simulating strong forces between the particles by large level dis-
tances.

Figure 8. A Boltzmann distribution calculated with the shelf model,
simulating low forces between the particles by small level distances.
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where h is Plank’s constant, m is the particle mass, l is the
uncertainty of position, r is the distance from the rotation
axes, D is the force constant, and n, J, and v are quantum
numbers. Although quantum physics led to different views
about these “movements”, the terminology is still in use to-
day. The main influences on the distances between the en-
ergy levels do not come from the quantum numbers but are
given by eqs 6–8 derived from the Schrödinger equation (10).

 The mass rule can be exemplified in the following way:
It is easy to recognize the mass rule because the mass always
enters the denominators. This means that a large mass leads
to a small level spacing. For simulating calculations with the
shelf model, the level distance has to be reduced.

Different aspects of the force rule can be exemplified as
follows: In the vibration term, the force constant D is found
in the numerator. A parabolic potential (E = 0.5D(∆r)2, with
E = potential energy and ∆r = stretching of the bond length)
belonging to a small force constant of vibration shows a wide
opening and leads to a great uncertainty of position and at
the same time to small level distances, that is, low absorp-
tion or emission frequencies (Figure 11). For example, the
diagrams in Figure 11 help to visualize the difference in in-
frared spectroscopy; for instance, the C�O double bond of
a ketone and the C�O single bond of an alcohol. Figure 11A
corresponds to the double bond with a large force constant,
large level distance, and a high absorption frequency. Figure
11B corresponds to the single bond with a smaller force con-
stant, smaller level distance, and a lower absorption frequency.
Figure 11C shows the situation if the normal oxygen atoms
are substituted by 18O atoms in the single bond. A quantum
leap downwards (emission of light) is shown in Figure 11A.
A quantum leap corresponding to absorption of light is in-
dicated by the arrow in Figure 11B (11).

In the rotation term the distance from the rotation axis,
r, is found in the denominator. That means for a halogen
molecule, X2, larger values of r (linked to a small vibration
force constant) lead to smaller level distances. The molecule
needs a larger space (uncertainty of position) to rotate.

In the translation term the uncertainty of position l arises
in the denominator. In a gas under low pressure a large un-
certainty of position l is the result of the weak force, which
leads to smaller level distances and larger entropy.

To simulate a stronger force with the shelf model a larger
level distance has to be used. Smaller bond distances, larger
electronegativity differences, larger polarity, better solubility

in water or larger molecular size for organic compounds are
effects that lead to stronger forces.

It is a quantum physical result (eqs 6–8) that the effects
of translation, rotation, and vibration show qualitatively simi-
lar trends. Therefore, in all three cases the shelf model calcu-
lations with equidistant levels lead to good approximations
showing these trends.

Entropy as Physical Property

Entropy Is Absolute
With the help of the shelf model it is possible to under-

stand that entropy indicates the number of occupied energy
levels in a system or in a substance. Molar entropies belong
to the thermodynamic quantities, which are given as abso-
lute values S° and not relative to an arbitrarily defined zero
level. We are only free to elect the unit of entropy, because
each phenomenon is invariant in relation to the used unit.

According to the third law of thermodynamics 0 K is
regarded as the zero level for entropy. The entropy of any
system reaches its minimum value at this temperature. The
value will be zero unless the lowest energy level is degenerate
(10). But 0 K is a phenomenon and cannot be freely defined
at a different point of the temperature scale. Furthermore the
number of energetic microstates belonging to a certain total
energy stored in a specific set of eigenvalues is not free for an
arbitrary definition. It would inevitably lead to contradiction
if a positive number would be defined as zero.

Similar to the density of a substance molar entropy is a
physical property that depends on temperature. The way in
which a material stores supplied heat or work is characteris-
tic of its internal structure and is reflected in its molar en-
tropy value. It is a result from the Boltzmann distribution
(especially for vibrational motion) that the same quantity of
total energy leads to different temperatures in systems with
different spacings of energy levels, that is, with different en-
tropy.4 At the same temperature a system with small entropy
stores less energy than a large one. Thus, a high value of en-
tropy indicates a large storage system for energy.5

The Concept of Atomic Entropy
Thermodynamically measured entropy values of the el-

ements are carried out with samples that consist of the natu-
ral isotopic mixture. Therefore, these values include all effects
deriving from the mixture of the masses, the mixture of the
chemical bonds within these samples, and the mixture of pos-
sible particle motions. For example different bonds occur
within the layers and between the layers of the hexagonal car-
bon ring systems of a graphite lattice. Two different bonds
occur as well in phosphorus and sulfur: within the molecules
P4 or S8 and between those molecules. The molar entropy
values of the elements represent average values per atom, be-
cause entropy is divided by the number of atoms. Unfortu-
nately there are some exceptions: The values for the diatomic
gases are average values per molecule, that is, double the num-
ber of atoms. It is obvious that a larger number of atoms will
occupy a greater number of energy levels and thus will store
more energy. The comparison of different elements is there-
fore unnecessarily complicated.

To avoid this complication, it is reasonable to treat all
substances equally. Consequently, the molar entropies were

Figure 11. (A) Parabolic potential of a strong force (small open-
ing) and large level distances. (B) Parabolic potential of a weaker
force (wide opening) and small level distances. (C) Parabolic po-
tential of a weak force as in (B) (wide opening) but between heavier
atoms than in (B) and therefore smaller level distances.
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converted and related to the number of atoms for the fol-
lowing statements. For these values this article introduces the
symbol Sat as a designation for atomic entropy. The molar
standard entropy S � of a substance AhBiCk... must be divided
by (h + i + k + ...) to get the value of the atomic entropy Sat.
Atomic entropies are more meaningful than the molar en-
tropies especially if one intends to compare substances with
different stoichiometry. For most elements atomic entropies
are identical with the molar entropies (apart from the excep-
tions mentioned above). To apply the three rules it is reason-
able to calculate average atomic masses and average atomic
distances (as a measure of the internal forces). The three rules
are tools for the qualitative interpretation of measured en-
tropy values. Calculations based on the shelf model are used
to confirm the following qualitative interpretations or esti-
mations of real data (2), not to approximate the listed mea-
sured entropy values.

Atomic Entropy of Elements

The Noble Gases
and the Gaseous Halogens in Comparison

Figure 12 shows that the entropies of the noble gases
increase from period to period. We assume that the noble
gas atoms do only exert almost negligible attractive forces
under standard conditions. So only the increasing mass is re-
sponsible for the increasing entropy values within the elemen-

tary group of the noble gases. The forces really affecting the
noble gas atoms come from repulsion against the walls of the
system and we consider them to be equal as long as the gases
are under the same conditions of temperature and pressure.

The halogens, bromine and iodine, are not gaseous at
298 K. Because the thermodynamic tables (2) list the entropy
values for both gaseous bromine and iodine at 298 K, we are
able to compare the gaseous halogens with the noble gases.

The elementary groups behave similarly in increasing
entropy values within the group because of the increasing
mass of the atoms or the molecules. However, the curve of
the halogens is at considerably lower values. From these data
we conclude that the motion of each halogen atom is reduced
by the force of the nonpolar atomic bond. According to the
force rule larger forces lead to smaller entropies. The mass
rule and force rule make these phenomena understandable.

The Alkali Metals and Alkaline Earth Metals in Com-
parison

At first sight the diagram in Figure 13 looks familiar as
its two curves run nearly parallel from period to period with
increasing values. The increasing mass however is only par-
tially responsible for the development of the entropy values.
With increasing period the atomic diameter becomes larger
and the distances between the metal ions in the lattice in-
crease. This means that the forces decrease in strength and
the entropy becomes larger additionally.

Figure 13. Atomic entropy of alkali metals and alkaline earth metals (2).Figure 12. Atomic entropy of gaseous elements (2).
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The alkaline earth atoms are approximately 9% heavier
than those of the alkali metals. On the other hand the dis-
tance between the atoms is approximately 19% smaller. This
leads to the assumption that the forces will be larger. We
therefore expect that the force influence is larger than the
effect of the mass. The chart confirms this expectation. This
further corresponds with our experience about the proper-
ties of these metals: Sodium and potassium can be cut with
a knife, but not magnesium and calcium. Alkaline earth at-
oms deliver in each case 2 electrons to the electron gas. This
means that smaller metal ions with larger charge will develop
larger forces. This corresponds with the higher melting tem-
peratures of the alkaline earth metals.

The Main Groups of the Periodic Table of Elements
The atomic entropies of the main group elements are

shown in Table 1. The values apply to 298 K and 101.3 kPa.
Two values for bromine and iodine are listed (2): Br(l) and
Br(g) and I(s) and I(g), all under standard condition. That is
why Table 1 contains two versions of the 7th main group. Some
of the data presented here have already been published in (12).

Inorganic Compounds
We start our discussion of compounds with the nonmet-

als and try to compare the hydrogen halides with the halo-
gens. Both kinds of substances consist of diatomic molecules
and the tables contain the standard entropies for both in the
gaseous state. This makes the comparison simple and the two
important differences are (i) the kinds of chemical bonding
and (ii) the particle masses.

Because of the electronegativity difference in the hydro-
gen halogen bonding, polar atomic bonds arise. In this case
the particles are influenced by stronger forces than in the case
of the pure halogens with nonpolar bonds.6 Since hydrogen
atoms have smaller masses than the halogen atoms, the par-
ticle mass decreases compared to the respective halogens. Both
effects cause the entropy values of the hydrogen halides to be
smaller than those of the pure gaseous halogens (Figure 14).

We now focus on simple compounds of the metals such
as salts, for example, the chlorides of the alkali metals and
alkaline earth metals. Some of these substances are well-
known such as sodium chloride. All these substances are solid
and crystalline under standard conditions. The crystals are
hard and brittle. Because of this characteristic property so-
dium chloride is also called rock salt. This property indicates
large forces and smaller entropies rather than the gaseous ma-
terials discussed above.

Again we will have to answer two questions:
1. Which forces arise?

2. How large are the particle masses?

Atomic entropies were already discussed. It is therefore easy
to compare substances with different stoichiometry. Since the
alkaline earth atoms form doubly charged ions one can expect
larger Coulomb forces than with the chlorides of the alkali
metals and thus smaller entropy values. The diagram (Figure
15), however, shows one exception: beryllium chloride.

In order to understand this deviation two further diagrams
will be introduced. Figure 16 shows the electronegativity dif-
ferences, ∆EN, of these salts and Figure 17 the bond distances.

Figure 17. The average particle distance of alkali metals and alka-
line earth metals (13).

Figure 14. Atomic entropy of diatomic gaseous molecules, halo-
gens and hydrogen halides (2).

Figure 15. Atomic entropy of salt-like compounds, chlorides of al-
kali metals and alkaline earth metals (2).

Figure 16. Electronegativity difference ∆EN of the chlorides of al-
kali metals and alkaline earth metals (13).
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For the chlorides of the second main group it is obvious
that the electronegativity differences will be smaller than those
of the alkali metal chlorides (Figure 16). With the beryllium
chloride the value of 1.5 is already so small that we can no
longer call it an ionic bond. This causes smaller forces and
therefore a larger entropy value. The masses of the alkaline
earth atoms are approximately. 9% larger than those of the
alkali metals. Therefore the influence of the mass is not so
important and the smaller entropy values are mainly a con-
sequence of the larger forces.

Since Coulomb forces become larger with smaller ion
distances the average particle distances of the salts were cal-
culated and are depicted in Figure 17. The diagram shows
the different bond distances and confirms the given inter-
pretation of the entropy values including the exception of
the beryllium chloride. The bond distance is relatively large
in comparison with the other substances (Figure 17). There-
fore the forces are unsystematically small and the entropy
value is found to be large.

Organic Compounds
The atomic entropies of organic compounds and those

of salt-like materials show a clearly different behavior. One
of the causes for this is the force of covalent bond. In the
case of the salts strong Coulomb forces between the ions in-
crease with decreasing diameter of the ions. In organic sub-
stances atomic bonds lead to van der Waals forces between
permanent or induced dipoles. Van der Waals forces how-
ever increase with expanding volume of the molecules. Fig-
ure 18 shows the atomic entropies for some organic liquid
compounds: hydrocarbons, primary alcohols, and mono car-
boxylic acids. It shows that the entropies decrease within the
homologous series with increasing number of carbon atoms,
that is, with increasing van der Waals forces. The curve be-
longing to the primary alcohols is typical for substances with
covalent bonds as well. One alcoholic group added to the
five C-atoms of pentane leads to pentanol and reduces the
entropy value:
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R
= 1 86.
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S

R
= 1 70.

The one added polar OH-group slightly enlarges the van
der Waals force and lowers the entropy. The changes in po-
larity and in solubility in water corresponds to changes of
these two entropy values. This effect decreases if the main
carbon chain increases, which means that there is less influ-
ence of one hydroxyl group on a longer chain.

Although the difference is obvious the organic com-
pounds follow the three rules as well as the elements or the
inorganic compounds. As pointed out above atomic entro-
pies are average values. To apply the three rules it is helpful
to calculate the average atomic volumes Vat and the average
atomic masses mat of these compounds by dividing the mo-
lecular volumes and masses by the number of atoms per mol-
ecule. The molecular volume can be calculated from the
density (13). Smaller atomic volume means that the atoms
come closer together and the forces increase, so it is possible
to understand the decreasing entropy within a homologous
series (Figure 18 and 19) as a result of the force rule.

The relatively high values of atomic entropy for the
mono carboxylic acids (Figure 18) may be astonishing be-
cause one normally supposes strong forces related to the large
polarity of these substances. In comparison to the primary
alcohols with the same number of carbon atoms two light
and small hydrogen atoms are substituted by one heavy and
large oxygen atom: CH4O to CH2O2 According to the mass
rule the enlarged average atomic mass (73.6% for methanoic
acid) leads to a greater entropy value (Figure 20).

Because of the greater diameter of the oxygen atom the
average atomic distances are enlarged (12.3%, Figure 19).
According to the force rule this leads to an additional en-
tropy increase.

Figure 18. Entropy decreases with increasing number of carbon
atoms (molecular volume); a typical effect linked to van der Waals
forces (2).

Figure 20. Average atomic mass mat of the homologous series of
hydrocarbons, primary alcohols, and mono carboxylic acids (13).

Figure 19. Average atomic volume Vat of the homologous series of
hydrocarbons, primary alcohols, and mono carboxylic acids (13).
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Conclusions

The ability to carry out reasonable interpretations of the
thermodynamically measured entropy values of all kinds of
substances is the key for understanding all kinds of phenom-
ena in which entropy and entropy changes are involved:
chemical reactions, chemical equilibrium, change of the state
of aggregation, temperature, refrigeration, steam engines, la-
ser beams, black bodies, and more. This is because all these
phenomena are linked to substances and changes in sub-
stances. If one accepts that in all cases quantum phenomena
constitute the basis, a deeper comprehension is possible and
not difficult to achieve. Entropy as a physical property de-
scribes the way energy is stored on the energy levels that are
characteristic for each substance.

It is indeed surprising, that only very little mathemati-
cal quantum physics is necessary to carry out good interpre-
tations. The three rules and the assumption of equidistant
energy levels as an approximation are sufficient in most cases.
For several years this had been practiced successfully by the
author with students at the age of 16 to 19 years in chemis-
try as well as in physics lessons in a secondary school.

Notes

1. This analogy is important when chemical reactions, chemi-
cal equilibrium, and entropy maxima are discussed.

2. Equation 6 describes the translational eigenvalues only in
one direction. So the calculated entropy is about one third of the
standard value. The calculation of occupation numbers is described
in the textbook by P. W. Atkins (10).

3. The number of microstates in a real system is so large, that
no one is able to get a realistic perception about it. The natural
logarithm of this number is smaller, but it still surpasses our imagi-
nation. The number of occupied energy levels, however, is of a size
that allows a vivid and concrete idea about it. Since the number of
microstates increases when the number of occupied energy levels
increases (see Figure 6) the statement may be accepted as a good
working simplification. The shelf model proves to work properly
even for the exception “noble gas”.

4. Monatomic gases may be possible exceptions because no
vibration is present.

5. From this experimental result a description of entropy may
be: Entropy is a measure of the extent of the storage system for
energy. Considering the mass rule this definition appears to be more
general because the dispersal of energy (5, 7) cannot be a mere geo-
metric effect. Larger entropy means that the stored energy is more
dispersed on a larger number of occupied energy levels.

6. If van der Waals forces occur the entropy values may be
affected by the size of the molecules because these forces increase
with the molecular surface. In the gaseous state this effect may be
considered to be small, since the particle distances are rather large
and the van der Waals forces rapidly decrease in this case. Molecu-
lar size is more important in organic liquids, but not within salts.
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