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Entropy and the second law of thermodynamics are piv-
otal topics in undergraduate physical chemistry (1). Tradi-
tionally in this course for majors, entropy has been introduced
by the Clausius definition thereby emphasizing its macro-
scopic aspect.
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Of the physical chemistry textbooks for majors listed in the
Buyers Guide of this Journal (2), 13 of 20 use this approach
(two books were unavailable to me). In such traditional books,
the modern statistical consideration of entropy is separated
from its classical definition and is dealt with many chapters
later, emphasizing its mathematical basis rather than concep-
tual connections with eq 1. However, this approach presents
a problem to students. Current general and organic chemis-
try texts emphasize chemistry as a molecular science. Thus,
the phenomenological introduction of entropy in physical
chemistry, if divorced from molecular behavior, appears to
be abstract in its bases. My experience has shown that this
strongly contributes to the previously described resentment
toward physical chemistry (1) and multiple misconceptions
(1a, 3). One of the most serious of these misconceptions is
that students often believe that there are two entropies: “ther-
mal” involving heat transfer, and “positional” that manifests
itself in gas expansion and mixing.

Relatively few of the textbooks in physical chemistry for
majors, 5 out of 18 (4), have used the molecular approach.
This usually entails the introduction of entropy based on
molecular statistics using the Boltzmann formula,
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where W is the number of microstates within the system and
kB is Boltzmann’s constant. In most of these texts (4) the pro-
totypical example dealing with the entropy of an ideal gas
doubling its volume upon expansion into vacuum precedes
a similar illustration treated by the Clausius approach (eq 1).
Using eq 2 in calculating the number of possible molecular
combinations before and after the expansion is intended to
introduce students to a quantitative molecular sense of en-
tropy. However, with this instructional sequence the above-
mentioned misconception about “two kinds of entropy” is
not removed because this gas expansion to different positions
in space is never specifically related to thermal events. In ad-
dition, such an initial example using molecules dispersing in
space as the statistical introduction of entropy implicitly re-
inforces the error of “entropy is ‘disorder’,” a misconception
that was recently decried by Lambert (5a).

Davies in 1972 published a brilliant textbook that in-
troduces entropy thoroughly based on rigorous statistical cal-
culation of the number of microstates using eq 2 (6). Despite
its great examples and fine quantitative approach, this book
has one problem: the detailed introduction of statistics is in-
herently long and challenging.1

I propose a molecular approach for the introduction of
entropy in undergraduate physical chemistry that incorpo-
rates the best features of Davies’ treatment (based on eq 2
and, thus, focused on energy dispersion2) but meets the needs
of present students by bypassing the complexities of statis-
tics. It upgrades the qualitative, intuitive approach of Lam-
bert for general chemistry (5b) to a semiquantitative treatment
using the Boltzmann distribution.

Sequence for a Molecular Approach
to the Introduction of Entropy

I suggest introducing entropy prior to its phenomeno-
logical description with four essential components: (i) A con-
tinual emphasis on entropy as a measure of the dispersion of
energy among accessible microstates. (ii) A quantum me-
chanical explanation for the increase of accessible microstates
in a box containing molecules when the box is enlarged. (iii)
The use of the Boltzmann distribution to explain the increase
in accessible microstates caused by either expansion or heat-
ing. (iv) Connecting the molecular significance of entropy
(eq 2) with eq 1 by illustrating the directionality of the heat
transfer from a hot to cold body.

Component 1: Entropy as a Measure
of the Energy Dispersal among Accessible Microstates

Baierlein defined a microstate as the state of a system in
which the location and momentum of each molecule and atom
are specified in great detail (7a). One may call it a particular
combination of molecules distributing the given quantity of
quantized energy.3 For quantum systems considered in this
article where the particle’s location is not defined, a simple
analogy may be suggested: A microstate is one way of arrang-
ing the finite number of similar books (particles) on a certain
number of horizontal shelves of different height (quantum lev-
els) in a library; the accessible energy levels are those that can
be reached by a librarian depending on how high the shelf is.

Entropy increase involves an increase in the number of
accessible microstates among which the energy of a system
can be distributed. Thus, there is only one kind of entropy
change in a system: the spreading of energy among a changed
number of accessible microstates (5b) whether that process
may be due to the change of volume, composition, or tem-
perature. The essence of my approach is that the numerical
values of W in eq 2 do not have to be calculated; Wfinal and
Winitial should only be qualitatively compared for assessing
the sign of ∆S. Then, only one principle of statistical ther-
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modynamics will be used henceforth: greater population of
higher quantum levels leads to a greater number of mi-
crostates. This principle is based on the Boltzmann distribu-
tion, namely, on the fact that there are always fewer particles
on the upper energy levels; so the accessibility of higher lev-
els limits the number of microstates.

Component 2: Entropy Change in Ideal Gases
Due to Volume Increase: Goals and Background

The pedagogical goals here are dual: first, to reinforce the
concept that spontaneous changes (the expansion of a gas into
a vacuum, the mixing of different ideal fluids) involve an in-
crease in entropy owing to an increase in the number of ac-
cessible microstates, to show thereby that “positional entropy”
is dependent on energy dispersion; and, second, to demon-
strate a connection between quantum mechanics and the sec-
ond law of thermodynamics. This approach was used on an
elementary level by Lambert (5b), and Atkins and Jones (8).

In quantum mechanics, translational energy is modeled
by considering the particle-in-a-box (a one-dimensional box,
i.e., a string, is used here for simplification),

E n h
ma

=
2 2

28
(3)

where m is the mass of the particle, h is the Planck constant,
n is an integer (quantum number), and a is the box length.
Upon the box expansion (for instance, from a to 2a), the
energy of each quantum level (n) decreases as can be seen in
eq 3. This result will hold in three dimensions, making the
case directly applicable to gas expansion. Since the total en-
ergy of the gas does not change upon expansion into vacuum,
the gap between the energy levels narrows. This can be illus-
trated for the gap between the first and second levels: for a
one-dimensional box, ∆E1–2 = 3h2�8ma2; that is, ∆E1–2 de-
creases upon the increase of parameter a. I suggest taking this
qualitative example one step further by considering the in-
crease of accessible microstates after expansion semi-quanti-
tatively, by using the Boltzmann distribution.

Component 3: The Boltzmann Distribution
and the Increase of the Number of Microstates
upon Expansion and upon Heating

Many physical chemistry textbooks use a very convinc-
ing and yet simple example in introducing the Boltzmann
distribution with 103–104 particles of a hypothetical chemi-
cal whose molecule has just two energy levels, 0 and ε (ε =
∆E1–2 in the previous section). I personally like the develop-
ment in Noggle (9). According to the Boltzmann distribu-
tion law, the relative populations, Ni, of these two levels are
expressed as follows:
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I suggest using this formula for illustration of the increase in
the number of accessible microstates upon both expansion
and heating. For expansion, the temperature is constant but,
as shown above, the value of ε (energy gap, ∆E ) declines.
Thus, based on eq 4a, the denominator increases, that is, the
population of the lowest energy level declines and some mol-
ecules are promoted to the second energy level. As noted in
Component 1, this leads to an increase in the number of their
combinations, that is, microstates. This result applies not only
to movement of a gas into a vacuum, but to expansion of all
types of ideal fluids—precisely to mixing of different gases,
superficially to the mixing of ideal miscible liquids.

As far as heating is concerned, a simple algebraic analy-
sis of eq 4 shows that at a low temperature approaching ab-
solute zero all particles must stay on the lowest energy level
(W = 1 and, thus, S = 0), whereas at an infinitely high tem-
perature the particle distribution between the two energy lev-
els becomes equal (1/2 vs. 1/2, see the values of N2 fractions
in Table 1). Therefore, an increase of temperature clearly
makes higher energy levels accessible to more particles—an
overall increase in accessible microstates—implying that the
system’s entropy increases (eq 2).

To make this qualitative illustration more tangible, one
needs to compare the fractions of N2 at different tempera-
tures. This can be done numerically (Table 1). An analytical
solution can be obtained for the population ratio of two en-
ergy levels, (N2�N1)T . By dividing eq 4b by eq 4a, many books
show that N2�N1  is equal to e�ε�kBT (6, 9).4 I suggest using
this to evaluate the population of the second energy level (and,
thus, the number of microstates) by considering the ratio of
these factors at two different temperatures:
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Based on eq 5, the ratio of relative populations is greater than
unity if T2 > T1, that is, heating increases the entropy of the
system.

Component 4: Connection to the Laws
of Thermodynamics

Just as important, I suggest that the same example (based
on eq 5) immediately demonstrates the connection between
eqs 1 and 2. The presence of temperature in the denomina-
tor of entropy-defining eq 1 can be illustrated as follows.
Imagine a situation when two otherwise identical systems,
one at a high temperature and the other at a low tempera-
ture, are given a small increment of heat (thermal energy
transfer) resulting in a 1 �C increase of temperature. Note
that the product T1T2 is present in the denominator of the
exponent in eq 5. Therefore, the change in N2�N1 is merely
infinitesimal upon a heat transfer at very high temperatures.
Conversely, the smaller the value of T1, the greater the in-
crease in the population of higher energy levels upon even a
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small increase of temperature. Examples of calculations of N2
fractions at both low and high temperatures are shown in
Table 1. In a sense, heat transfer to a very cold body is simi-
lar to gas expansion into vacuum because the system ends
up with many more accessible microstates.

As qualitatively demonstrated by Atkins and de Paula
(10), showing the favorability of the heat transfer to a colder
body is tantamount to demonstrating the impossibility of the
heat transfer from a cold to hot body, thus leading to one of
the formulations of the second law of thermodynamics. A
short calculation can be performed to provide a more tan-
gible illustration of this principle. In Table 1, the relative
population of the second, highest energy level (N2) is calcu-
lated based on eq 4b and the ratio ε�kB = 100 K [this value,
corresponding to the rotation of light molecules, was sug-
gested by Noggle (9)]. Now, consider allowing the heat trans-
fer between the otherwise identical systems at Tcold = 1, 10,
100, and 1000 K and Thot = 3, 30, 300, and 3000 K, respec-
tively. The resulting temperatures, Tfinal, will be the mean val-
ues of Tcold and Thot: 2, 20, 200, and 2000 K. Now, we can
verify whether equalizing the temperatures via the heat trans-
fer is, indeed, favorable. The last two columns in Table 1 show
that the value of N2 and, thus, the number of microstates
will increase significantly upon warming the colder body. The
magnitude of this favorable change is always greater than that
of the corresponding decrease of N2 upon cooling the hotter
body, the effect being more pronounced at lower tempera-
tures. This is true for any Tcold and Thot. Therefore, when-
ever the final temperature is different from the average of Tcold
and Thot, there is a driving force for reaching the thermal equi-
librium by equalizing the temperatures.

Parenthetically, eq 4 also illustrates the third law (the
system is uniform and, thus, has only one macrostate,
S = ln 1 = 0 at T = 0 K). Equation 5 demonstrates that
T1 = 0 K is not attainable.

Implementation

Obviously, this way of introducing entropy in physical
chemistry requires some prior background but it need not
be the extensive treatment of quantum and statistical mechan-
ics that will come later in the course. Specifically, the idea of
the particle-in-a-box (or on a line) model and the Boltzmann
distribution should be presented simply (as outlined here)
prior to introducing thermodynamics. A facile derivation of
the Boltzmann distribution based on eq 2 without using the
variation methods is available (11). The energy levels for the
particle-in-a-box can be derived without the mathematical
complexities of quantum mechanics as it is done by Barrow
(12).

Summary

Using simple examples based on the Boltzmann distri-
bution, entropy can be introduced consistently on a molecular
basis by emphasizing energy distribution among the acces-
sible microstates. Students are strengthened in their under-
standing of chemistry as a molecular science. Then they can
remain focused in the ensuing phenomenological consider-
ation of thermodynamics because it has been given a mo-
lecular foundation for its concrete and well-defined goal of
calculating entropy using the experimental measurable val-
ues of work, heat, and temperature.
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Notes

1. One of the few schools that maintain the legacy of this ap-
proach, St. Olaf College (MN), allocates one entire semester to this
statistical treatment of thermodynamics (13).

2. The words “distribution”, “dispersion”, “dispersal”, “spread-
ing out” are also applicable as long as they do not bear a connota-
tion of energy being lost.

3. Leff ’s metaphor of an “energy storage mode” (7b) can be
used.

4. Recently, Novak suggested an alternative approach for de-
riving the second law using the Boltzmann distribution (14). His
method is based on the N2�N1 = e�ε�kBT  relation, which is solved for
T and then differentiated to yield dT as a function of dε and dN.
The essence of his original treatment is bypassing eq 2 whereas I make
this equation a centerpiece of my algebra-based treatment: thus, these
two methods complement one another. Novak’s consideration of
mechanical work, isochoric heating, and heat engines appears espe-
cially suited to thermodynamics classes involving engineering students.

Literature Cited

1. The following papers have been published in this Journal:  (a)
Bartell, L. S. J. Chem. Educ. 2001, 78, 1059–1067. (b)
Williamson, B. E.; Morikawa, T. J. Chem. Educ. 2002, 79,
339–342. (c) Derrick, M. E.; Derrick, F. W.  J. Chem. Educ.
2002, 79, 1013–1016.

2. Buyers’ Guide J. Chem. Educ. 2003. http://www.umsl.edu/
~chemist/cgi-test/mybooks.pl?category=49 (accessed Jul 2004).

3. Jasien, P. G.; Oberem, G. E.  J. Chem. Educ. 2002, 79, 889–
895.

4. Winn, J. S. Physical Chemistry: An Introduction, 1st ed.; Ben-
jamin/Cummings (Addison-Wesley Longman): Menlo Park,
CA, 1995. McQuarrie, D. A.; Simon, J. D. Physical Chemis-
try: A Molecular Approach, 1st ed.; University Science Books:
Sausalito, CA, 1997. Kuhn, H; Forsterling, H.-D. Principles
of Physical Chemistry: Understanding Molecules, Molecular As-
semblies, Supramolecular Machines, 1st ed.; John Wiley: New
York, 1999. Berry, R. S.; Rice, S. A.; Ross J. Physical Chemis-
try, 2nd ed.; Oxford University Press: Oxford, 2000.

5. (a) Lambert, F. L. J. Chem. Educ. 2002, 79, 187–192. (b) Lam-
bert, F. L. J. Chem. Educ. 2002, 79, 1241–1246 and refer-
ences therein.

6. Davies, W. G. Introduction to Chemical Thermodynamics: A
Non-Calculus Approach; W.B. Saunders Company: Philadel-
phia, PA, 1972.

7. (a) Baierlein, R. Thermal Physics; Cambridge University Press:
New York, 1999; p 25. (b) Leff, H. S. Am. J. Phys. 1996, 64,
1261–1271.

8. Atkins, P. W.; Jones, L. Chemical Principles: The Quest for In-
sight, 2nd ed.; W. H. Freeman: New York, 2002; pp 354–357.

9. Noggle, J. H. Physical Chemistry, 3rd ed.; Harper Collins: New
York, 1997; pp 229–231.

10. Atkins, P. W.; de Paula, J. Physical Chemistry, 7th ed.; W. H.
Freeman: New York, 2002; p 93.

11. McDowell, S. A. J. Chem. Educ. 1999, 76, 1393–1394.
12. Barrow, G. M. Physical Chemistry, 6th ed.; McGraw-Hill: New

York, 1996; pp 65–70.
13. Hanson, R. M.; Green, S. M. E. Introduction to Molecular

Thermodynamics; Integrated Graphics: Northfield, MN, 2000.
14. Novak, I. J. Chem. Educ. 2003, 79, 187–192.

http://www.jce.divched.org/Journal/
http://www.jce.divched.org/Journal/Issues/2004/
http://www.jce.divched.org/
http://www.jce.divched.org/Journal/Issues/2001/Aug/abs1059.html
http://www.jce.divched.org/Journal/Issues/2002/Mar/abs339.html
http://www.jce.divched.org/Journal/Issues/2002/Mar/abs339.html
http://www.jce.divched.org/Journal/Issues/2002/Aug/abs1013.html
http://www.umsl.edu/~chemist/cgi-test/mybooks.pl?category=49
http://www.umsl.edu/~chemist/cgi-test/mybooks.pl?category=49
http://www.jce.divched.org/Journal/Issues/2002/Jul/abs889.html
http://www.jce.divched.org/Journal/Issues/2002/Jul/abs889.html
http://www.jce.divched.org/Journal/Issues/2002/Feb/abs187.html
http://www.jce.divched.org/Journal/Issues/2002/Oct/abs1241.html

